Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625508

RESUMO

Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.

2.
World J Microbiol Biotechnol ; 40(6): 171, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630327

RESUMO

A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, ß-Turns, and ß-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.


Assuntos
Magnésio , Simulação de Dinâmica Molecular , Radioisótopos , Proteínas de Saccharomyces cerevisiae , Fosfatase Ácida/genética , Saccharomyces cerevisiae/genética , Histidina , Simulação de Acoplamento Molecular , Proteínas de Saccharomyces cerevisiae/genética
3.
Int Microbiol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489100

RESUMO

Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.

4.
Arch Microbiol ; 206(4): 152, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472371

RESUMO

Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Biotecnologia/métodos , Proteínas de Escherichia coli/metabolismo
5.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189364

RESUMO

Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards ß-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.Communicated by Ramaswamy H. Sarma.

6.
Med Mycol ; 62(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38061839

RESUMO

Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.


International research collaborations have evident its significance in impactful work covering all aspects of Candida pathogenicity. Its current, diverse research was discussed thematically based on the comprehensive scientometric analysis with unidentified hub representatives for subsequent work.


Assuntos
Candidíase , Vacinas , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/genética , Candidíase/microbiologia , Candidíase/veterinária , Testes de Sensibilidade Microbiana/veterinária , Virulência , Bibliometria
7.
World J Microbiol Biotechnol ; 40(1): 39, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062216

RESUMO

Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.


Assuntos
Pichia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Pichia/genética , Pichia/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo
8.
Appl Microbiol Biotechnol ; 107(18): 5569-5593, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450018

RESUMO

Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.


Assuntos
Anti-Infecciosos , Bacillus , Bacillus/genética , Bacillus/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia
9.
Mol Biol Rep ; 50(6): 5283-5294, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148413

RESUMO

BACKGROUND: Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones. METHODS AND RESULTS: In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified. CONCLUSION: These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.


Assuntos
Polygonum , Polygonum/genética , Polygonum/metabolismo , Filogenia , Clonagem Molecular , Flavonoides/metabolismo
10.
Anal Biochem ; 668: 115092, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889624

RESUMO

In eukaryotes, serine proteases are cellular localized hydrolases reported to regulate essential biological reactions. Improved industrial applications of proteins are aided by prediction and analysis of their 3-dimensional structures (3D). A serine protease was identified from CTG-clade yeast Meyerozyma guilliermondii strain SO and its 3D structure as well as its catalytic attributes have not been fully understood yet, thus we seek to report on the catalytic mechanism of M. guilliermondii strain SO MgPRB1 using substrate PMSF via in silico docking as well as its stability by way of disulfide bonds formation. Herein, bioinformatics tools and techniques were used to predict, validate and analyze the possible changes of CUG ambiguity (if any) in strain SO using template PDB ID: 3F7O. Structural assessments confirmed the classic catalytic triad Asp305, His337, and Ser499. Superimposition of MgPRB1 and template 3F7O structures revealed the unlinked cysteine residues between Cys341, Cys440, Cys471 and Cys506 of MgPRB1 compared to template 3F7O with two disulfide bonds formation, which confers structural stability. In conclusion, serine protease structure from strain SO was successfully predicted and studies towards understanding at the molecular level may be undertaken for its potential applications in the degradation of peptide bonds.


Assuntos
Saccharomycetales , Serina Proteases , Serina Endopeptidases , Dissulfetos
11.
Microb Pathog ; 176: 106025, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36754101

RESUMO

Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.


Assuntos
Fatores de Virulência , Peixe-Zebra , Animais , Humanos , Fosfopiruvato Hidratase , Interações entre Hospedeiro e Microrganismos , Candida albicans
12.
Int J Biol Macromol ; 232: 123440, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36708895

RESUMO

Engineered thermostable microbial enzymes are widely employed to catalyze chemical reactions in numerous industrial sectors. Although high thermostability is a prerequisite of industrial applications, enzyme activity is usually sacrificed during thermostability improvement. Therefore, it is vital to select the common and compatible strategies between thermostability and activity improvement to reduce mutants̕ libraries and screening time. Three functional protein engineering approaches, including directed evolution, rational design, and semi-rational design, are employed to manipulate protein structure on a genetic basis. From a structural standpoint, integrative strategies such as increasing substrate affinity; introducing electrostatic interaction; removing steric hindrance; increasing flexibility of the active site; N- and C-terminal engineering; and increasing intramolecular and intermolecular hydrophobic interactions are well-known to improve simultaneous activity and thermostability. The current review aims to analyze relevant strategies to improve thermostability and activity simultaneously to circumvent the thermostability and activity trade-off of industrial enzymes.


Assuntos
Engenharia de Proteínas , Estabilidade Enzimática , Temperatura
13.
J Biomol Struct Dyn ; 41(20): 10347-10367, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510668

RESUMO

Leptospirosis is one of the neglected zoonosis, affecting human and animal populations worldwide. Reliable effective therapeutics and concerns to look for more research into the molecular analysis of its genome is therefore needed. In the genomic pool of the Leptospira interrogans many hypothetical proteins are still uncharacterized. In the current research, we performed extensive in silico analysis to prioritize the potential hypothetical proteins of L. interrogans serovar Copenhageni via stepwise reducing the available hypothetical proteins (Total 3606) of the assembly to only 15, based on non-homologous to homosapien, essential, functional, virulent, cellular localization. Out of them, only two proteins WP_000898918.1 (Hypothetical Protein 1) & WP_001014594.1 (Hypothetical Protein 2) were found druggable and involved in protein-protein interaction network. The 3 D structures of these two target proteins were predicted via ab initio homology modeling followed by structures refinement and validation, as no structures were available till date. The analysis also revealed that the functional domains, families and protein-protein interacting partners identified in both proteins are crucial for the survival of the bacteria. The binding cavities were predicted for both the proteins through blind and specific protein-ligand docking with their respective ligands and inhibitors and were found to be in accordance with the druggable sites predicted by DoGSiteScorer. The docking interactions were found within the active functional domains for both the proteins while for Hypothetical Protein 2, the same residues were involved in interactions with Cytidine-5'-triphosphate in blind and specific docking. Furthermore, the simulations of molecular dynamics and free binding energy revealed the stable substrate binding and efficient binding energies, and were in accordance to our docking results. The work predicted two unique hypothetical proteins of L. interrogans as a potential druggable targets for designing of inhibitors for them.Communicated by Ramaswamy H. Sarma.


Assuntos
Leptospira interrogans , Leptospira , Leptospirose , Animais , Humanos , Sorogrupo , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Leptospirose/tratamento farmacológico , Leptospirose/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Leptospira/química , Leptospira/metabolismo
14.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499718

RESUMO

Cold environments characterised by diverse temperatures close to or below the water freezing point dominate about 80% of the Earth's biosphere. One of the survival strategies adopted by microorganisms living in cold environments is their expression of cold-active enzymes that enable them to perform an efficient metabolic flux at low temperatures necessary to thrive and reproduce under those constraints. Cold-active enzymes are ideal biocatalysts that can reduce the need for heating procedures and improve industrial processes' quality, sustainability, and cost-effectiveness. Despite their wide applications, their industrial usage is still limited, and the major contributing factor is the lack of complete understanding of their structure and cold adaptation mechanisms. The current review looked at the recombinant overexpression, purification, and recent mechanism of cold adaptation, various approaches for purification, and three-dimensional (3D) crystal structure elucidation of cold-active lipases and esterase.


Assuntos
Esterases , Lipase , Esterases/metabolismo , Lipase/metabolismo , Temperatura Baixa
16.
Appl Microbiol Biotechnol ; 106(13-16): 4845-4866, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35804158

RESUMO

Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.


Assuntos
Engenharia de Proteínas , Estabilidade Enzimática , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Temperatura
17.
Microb Pathog ; 169: 105637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35710088

RESUMO

Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.


Assuntos
Burkholderia pseudomallei , Melioidose , Burkholderia pseudomallei/genética , Humanos , Melioidose/diagnóstico , Melioidose/microbiologia , Tipagem de Sequências Multilocus , Estudos Prospectivos , Fatores de Virulência/genética
18.
Biotechnol Appl Biochem ; 69(6): 2599-2616, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35019178

RESUMO

Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.


Assuntos
Bacillus , Subtilisina , Subtilisina/genética , Cálcio , Sequência de Aminoácidos , Clonagem Molecular , Bacillus/genética
19.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770879

RESUMO

Haematococcus pluvialis, a green microalga, appears to be a rich source of valuable bioactive compounds, such as astaxanthin, carotenoids, proteins, lutein, and fatty acids (FAs). Astaxanthin has a variety of health benefits and is used in the nutraceutical and pharmaceutical industries. Astaxanthin, for example, preserves the redox state and functional integrity of mitochondria and shows advantages despite a low dietary intake. Because of its antioxidant capacity, astaxanthin has recently piqued the interest of researchers due to its potential pharmacological effects, which include anti-diabetic, anti-inflammatory, and antioxidant activities, as well as neuro-, cardiovascular-, ocular, and skin-protective properties. Astaxanthin is a popular nutritional ingredient and a significant component in animal and aquaculture feed. Extensive studies over the last two decades have established the mechanism by which persistent oxidative stress leads to chronic inflammation, which then mediates the majority of serious diseases. This mini-review provides an overview of contemporary research that makes use of the astaxanthin pigment. This mini-review provides insight into the potential of H. pluvialis as a potent antioxidant in the industry, as well as the broad range of applications for astaxanthin molecules as a potent antioxidant in the industrial sector.


Assuntos
Produtos Biológicos , Suplementos Nutricionais , Fibrinolíticos/metabolismo , Microalgas/fisiologia , Biotecnologia , Desenvolvimento de Medicamentos , Fibrinolíticos/farmacologia , Indústria Alimentícia , Microalgas/química , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/metabolismo , Xantofilas/farmacologia
20.
Med Mycol ; 59(12): 1127-1144, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34506621

RESUMO

Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate as candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade or interact with the enterocyte membrane components. Candidalysin, however, acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only Sap and Als have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans. LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.


Assuntos
Candida , Candidíase Invasiva , Animais , Antifúngicos/uso terapêutico , Candida albicans , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/veterinária , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...